Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Jian Chen, Yi-Zhi Li, Xue-Tai Chen,* Yu-Jun Shi and Xiao-Zeng You

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.043$
$w R$ factor $=0.092$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrabutylammonium tetrakis(nitrato- $\kappa^{2} O, O^{\prime}$)-[1,3,5-tris(pyrazolyl)methane- $\kappa^{3} N$]cerate(III)

Abstract

The title complex, $\left({ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right)^{+}\left[\left(\mathrm{HCPz}_{3}\right) \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\right]^{-}$or $\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}\right)\right]$, which is the first lanthanide(III) complex of tris(pyrazolyl)methane $\left(\mathrm{HCPz}_{3}\right)$, is 11coordinate. The $\mathrm{Ce}-\mathrm{O}$ and $\mathrm{Ce}-\mathrm{N}$ bond lengths are in the ranges 2.514 (3)-2.685 (3) and 2.686 (4)-2.761 (4) A, respectively.

Comment

The coordination chemistry of the neutral tripodal ligand tris(pyrazolyl)methane $\left(\mathrm{HCPz}_{3}\right)$ is relatively underdeveloped, compared to the anion tris(pyrazolyl)borate (Tp), even though it was introduced by Trofimenko as early as 1986 (Trofimenko, 1986). So far, many transition metal complexes with HCPz_{3} have been prepared (Astley et al., 1993; Bhambri \& Tocher, 1997; Reger et al., 1996) and reports of main group element complexes have also appeared (Pettinari et al., 1999; Reger et al., 1997). However, no rare earth complexes with this remarkable tridentate ligands have been reported. Herein we report the title $\mathrm{Ce}^{\mathrm{III}}$ complex, (I).

(I)

The crystal structure of (I) consists of discrete $\left[\left(\mathrm{HCPz}_{3}\right) \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\right]^{-}$and ${ }^{n} \mathrm{Bu}_{4} \mathrm{~N}^{+}$ions. The structure of the anion is shown in Fig. 1. The cerium(III) ion is surrounded by three N atoms from the tridentate HCPz_{3} ligand and eight O atoms belonging to four bidentate chelating nitrate ligands. This structure is similar to the 11 -coordinate Ce -nitrate complexes $\mathrm{Ce}^{\text {III }}\left(\mathrm{NO}_{3}\right)_{4}\left(R_{3} \mathrm{TPTZ}\right)$ [R is $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ and TPTZ is 2,4,6-tris(2-pyridyl)-1,3,5-triazine; Gabriel et al., 1996] and (Hpy) $\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{NO}_{3}\right)_{4}(\right.$ terpy $\left.)\right]$.py (terpy is terpyridine; Grigoriev et al., 2001). The $\mathrm{Ce}-\mathrm{O}$ bond distances are in the range 2.514 (3) -2.685 (3) \AA, and the shortest and longest $\mathrm{Ce}-\mathrm{O}$ distances are slightly shorter than those in $\mathrm{Ce}^{\mathrm{III}}\left(\mathrm{NO}_{3}\right)_{4}\left(R_{3} \mathrm{TPTZ}\right) \quad[\mathrm{Ce}-\mathrm{O} \quad 2.522(7)-2.699(9) \AA] \quad$ and $(\mathrm{Hpy})\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{NO}_{3}\right)_{4}\right.$ (terpy)].py $\quad\left[\mathrm{Ce}-\mathrm{O} \quad 2.570(2)-2.709(2)^{\circ}\right]$.

Received 1 November 2002 Accepted 19 November 2002 Online 30 November 2002

Figure 1
View of the $\left[\left(\mathrm{HCPz}_{3}\right) \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\right]^{-}$anion, with displacement ellipsoids at the 20% probability level.

Figure 2
The crystal packing of compound (I), viewed dalong the c axis, showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ short contacts.

They are also comparable to those in ten-coordinate $\mathrm{Ce}^{\text {III }}$ complexes, for example $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{P}\right]_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}$ [mean 2.57 (3) A; Al-Karaghouli \& Wood, 1973] and $\left[\mathrm{Ce}(\mathrm{ntb})\left(\mathrm{NO}_{3}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ [ntb is tris(benzimidazol-2-ylmethyl)amine; mean 2.597 (2) Å; Su et al., 1998]. The nitrate ligands are coordinated to the cerium(III) ion in a slightly asymmetrical manner, with differences in the $\mathrm{Ce} \cdots \mathrm{O}$ distances of 0.176 (2), 0.022 (2), 0.065 (2) and 0.065 (2) \AA for the individual nitrate groups. $\mathrm{Ce}^{\mathrm{III}}$ is approximately coplanar with each of the nitrate ligands. The average dihedral angle of the chelating nitrate ligands is 48°; viz. the dihedral angles are between planes $1(\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{O} 3 / \mathrm{N} 7)$ and $2(\mathrm{O} 4 / \mathrm{O} 5 / \mathrm{O} 6 / \mathrm{N} 8)$, and between planes 1 and 3 (O7/O8/O9/N9). The $\mathrm{Ce}^{\mathrm{III}}-\mathrm{N}$ distances are in the range 2.686 (4) -2.761 (4) \AA; however, the shortest and longest $\mathrm{Ce}-\mathrm{N}$ distances are slightly longer than those in
$\mathrm{Ce}^{\text {III }}\left(\mathrm{NO}_{3}\right)_{4}\left(R_{3} \mathrm{TPTZ}\right) \quad[\mathrm{Ce}-\mathrm{N} \quad 2.673(7)-2.734(7) \AA]$ and (Hpy) $\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{NO}_{3}\right)_{4}\right.$ (terpy)].py [Ce-N 2.624 (2)-2.706 (2) \AA]. The three angles $(\mathrm{N} 1-\mathrm{Ce} 1-\mathrm{N} 3, \mathrm{~N} 1-\mathrm{Ce} 1-\mathrm{N} 5$ and $\mathrm{N} 3-$ $\mathrm{Ce} 1-\mathrm{N} 5$) of the tridentate ligand of the title complex are in the range $63.53(13)-70.10(13)^{\circ}$, and are larger than those of $\mathrm{Ce}^{\text {III }}\left(\mathrm{NO}_{3}\right)_{4}\left(R_{3} \mathrm{TPTZ}\right)$ [dihedral angles 59.4 (2)-62.4 (2) ${ }^{\circ}$] and (Hpy) $\left[\mathrm{Ce}^{\mathrm{IV}}\left(\mathrm{NO}_{3}\right)_{4}\right.$ (terpy) $]$.py [dihedral angles 57.68 (7)$\left.61.37(7)^{\circ}\right]$. There are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ close contacts leading to a three-dimensional polymeric network (Fig. 2 and Table 2).

Experimental

All the chemicals used are commercially available, except for $\mathrm{HCP}_{z_{3}}$, which was prepared according to the literature method of Reger (2000). Elemental analyses were carried out on a Perkin-Elmer 240 C elemental analyser. To an ethanol (25 ml) solution containing $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ was added, stepwise, $\mathrm{HCPz}_{3}(0.5 \mathrm{mmol})$ and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBr}(0.5 \mathrm{mmol})$, and the reaction mixture refluxed for 30 min with stirring and then filtered. The filtrate was allowed to stand in air for several days, producing colorless rod-like crystals of (I) (yield $c a 70 \%$). Analysis calculated: C 36.96, H 5.49, N 18.24\%; found: C 36.91, H 5.55, N 18.28%. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO): δ (p.p.m.) 7.89 and $7.66(d, d, 3 \mathrm{H}, 3 \mathrm{H}, 3-\mathrm{H}$ and $5-\mathrm{H}$ on Pz$), 6.42(t, 3 \mathrm{H}$, 4 H on Pz$), 8.97\left(s, 1 \mathrm{H}\right.$ on $\left.\mathrm{HCPz}_{3}\right), 3.16$ and $0.93\left(t, t, 8 \mathrm{H}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ and CH_{3} on ${ }^{n} \mathrm{Bu}^{4} \mathrm{~N}$), 1.56 and $1.30\left(\mathrm{~m}, \mathrm{~m}, 8 \mathrm{H}, 8 \mathrm{H}, \mathrm{CH}_{2}\right.$ and CH_{2} on $\left.{ }^{n} \mathrm{Bu}^{4} \mathrm{~N}\right)$.

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}\right)\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}\right)\right] \quad D_{x}=1.507 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=844.86$
Monoclinic, $P 2_{d} / c$
$a=12.484$ (1) A
$b=16.742$ (1) \AA
$c=18.267$ (1) \AA
$\beta=102.82(1)^{\circ}$
$V=3722.8$ (4) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 4597

> reflections
$\theta=2.2-23.8^{\circ}$
$\mu=1.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rod, colorless

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.740, T_{\text {max }}=0.771$
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

18988 measured reflections
6546 independent reflections
4018 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 19$
$l=0 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.092$
$S=1.02$
6546 reflections
431 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2} \\
&+1.99 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected interatomic distancess (\AA).

$\mathrm{Ce} 1-\mathrm{O} 1$	$2.514(3)$	$\mathrm{Ce} 1-\mathrm{O} 7$	$2.660(3)$
$\mathrm{Ce} 1-\mathrm{O} 11$	$2.572(3)$	$\mathrm{Ce} 1-\mathrm{O} 2$	$2.685(3)$
$\mathrm{Ce} 1-\mathrm{O} 5$	$2.602(3)$	$\mathrm{Ce} 1-\mathrm{N} 1$	$2.686(4)$
$\mathrm{Ce} 1-\mathrm{O} 8$	$2.615(3)$	$\mathrm{Ce} 1-\mathrm{N} 5$	$2.705(4)$
$\mathrm{Ce} 1-\mathrm{O} 4$	$2.626(3)$	$\mathrm{Ce} 1-\mathrm{N} 3$	$2.761(4)$
$\mathrm{Ce} 1-\mathrm{O} 10$	$2.630(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

The H atoms were positioned geometrically and refined with a riding model.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a Natural Science Grant of Jiangsu Province (BK 99032). We also thank the Nanjing

University Talent Development Foundation for a research grant (No. 0205005122).

References

Al-Karaghouli, A. R. \& Wood, J. S. (1973). J. Chem. Soc. Dalton Trans. pp. 2318-2321.
Astley, T., Gulbis, J. M., Hitchman, M. A. \& Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509-515.
Bhambri, S. \& Tocher, D. A. (1997). J. Chem. Soc. Dalton Trans. pp. 33673372.

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Gabriel, Y. S. C., Drew, M. G. B., Hudson, M. J., Isaacs, N. S. \& Byers, P. (1996). Polyhedron, 15, 3385-3398.
Grigoriev, M. S., Auwer, C. D. \& Madic, C. (2001). Acta Cryst. C57, 1141-1143.
Pettinari, C., Pellei, M., Cingolani, A., Martini, D., Drozdov, A., Troyanov, S., Panzeri W. \& Mele, A. (1999). Inorg. Chem. 38, 5777-5787.
Reger, D. L., Collins, J. E., Myers, S. M., Rheingold, A. L. \& Liable-Sands, L. M. (1996). Inorg. Chem. 35, 4904-4909.

Reger, D. L., Collins, J. E., Rheingold, A. L., LiableSands, L. M. \& Yap, G. P. A. (1997). Inorg. Chem. 36, 345-351.

Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. \& Sommer, R. D. (2000). J. Organomet. Chem. 607, 120128.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Su, C.-Y., Kang, B.-S., Mu, X.-Q., Sun, J., Tong, Y.-X. \& Chen, Z.-N. (1998). Aust. J. Chem. 51, 565-571.
Trofimenko, S. (1986). Prog. Inorg. Chem. 34, 115.

